Solid-State Inorganic Nanofiber Network-Polymer Composite Electrolytes for Lithium Batteries

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &
Renewable Energy

PI/Co-PI: Nianqiang Wu (WVU/ Xiangwu Zhang (NCSU)

Objective: develop highly-conductive solid-state electrolytes by integrating an inorganic nanofibrous network in a conductive polymer matrix.

Impact:

- Overcome the safety issue with liquid-electrolyte-based lithium ion batteries, enabling new non-flammable battery platform for all-solid-state battery development.
- Suppress the dendrite formation between the electrolyte/electrode interface.

Li_{0.33}La_{0.557}TiO₃ (LLTO) nanofibers fabricate by electrospinning

The electrospun nanofibers after calcination at 900 °C, showing the stability

Accomplishments (FY17):

- Synthesized the cross-linked polymer (CLP), the lithium block cross-linked polymer and the block-co-polymer as the polymer matrix.
- The polymer shows ionic conductivity of 2.36×10^{-4} S/cm.
- Synthesized two types of inorganic nanofibers including perovskite-type oxides, LiO.₃₃La_{0.56}TiO₃ (LLTO), and garnet-type oxides, Li₇₋₃yAl_vLa₃Zr₂O₁₂ (LALZO).
- The inorganic nanofibers show ionic conductivity of 1.08×10⁻³ S/cm.
- Synthesized the ceramic nanofiber-polymer composite electrolyte, showing ionic conductivity of 5.1×10^{-4} S/cm.

FY 18 Milestones:

- Synthesize composite electrolytes.
- Test the electrochemical performance of composite electrolytes.
- Test the mechanical properties of composite electrolytes.

FY18 Deliverables:

Reports and two journal papers.

Funding:

- FY19: \$456,762, FY18: \$463,711, FY17: \$479,720